skip to Main Content
The role of the sax-7/L1CAM gene in the maintenance of neuronal architecture

Project description

Whereas remarkable advances have been made in understanding brain development, the mechanisms that protect the nervous system architecture throughout life are unknown. Indeed, how the structural and functional integrity of a nervous system established during embryogenesis is maintained lifelong, despite the growth and movements of the body, brain maturation and aging, remains unanswered. To study the maintenance of neuronal architecture, we use the powerful genetic and molecular model Caenorhabditis elegans. Our research has identified genes involved in neural maintenance, one of them being sax-7, an evolutionary conserved gene that encodes the homologue of cell adhesion molecule L1CAM in mammals. It ensures the structural maintenance of the nervous system in worms, it is required for proper brain function in adult mice, and in humans, L1CAM mutations lead to neurodevelopmental conditions, referred to as the C.R.A.S.H syndrome. This syndrome affects less than 0.05% of the population and treatments are still lacking. Thus, elucidating the molecular and cellular mechanisms by which the molecule SAX-7/L1CAM and its interactors participate in the neuronal maintenance is expected to help in the development of new detection and treatment strategies of this orphan syndrome and of other neurodevelopmental and neurodegenerative conditions in humans.

Research Team

Name: Virginie Desse, B.Sc.
Supervisor: Claire Bénard (UQAM)
Laureate: Master fellowship 2018

Back To Top